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Abstract. Subjoining among affine Kac-Moody algebras is a relation generalising the 
algebra-subalgebra relation. It is analogous to subjoinings among semisimple finite Lie 
algebras. A list of maximal subjoinings of equal rank affine Kac-Moody algebras is 
presented.. It is conjectured that there are no other maximal subjoinings. 

Resume. La sous-jonction parmi les algibres de Kac-Moody affine est une relation gin-  
Cralisant la relation algibre-sous-algibre. Elle est analogue aux sous-jonctions parmi les 
algkbres de Lie semi-simples finies. Une liste des sous-jonctions maximales pour des 
algkbres de Kac-Moody affines est presentCe. On avance la conjecture qu’il n’y a pas 
d’autres sous-jonctions maximales. 

1. Introduction 

Subjoinings among semisimple finite-dimensional Lie algebras have been studied 
recently [ 1-51 with extensive examples shown in [ 6 ] .  Subjoining generalises the familiar 
inclusion relation of semisimple Lie algebras in semisimple Lie algebras in that the 
latter becomes a special case. Here we initiate the study of the analogous relation 
among affine Kac-Moody algebras by demonstrating many examples of it. In fact, we 
believe that we list here all maximal proper subjoinings of affine Kac-Moody algebras, 
but we do  not have a proof of that assertion. 

Inclusions, or equivalently, embeddings, of Lie algebras have been extensively 
exploited for a long time in mathematics and in its applications. It is natural to expect 
that the generalisation should also prove useful. 

The most striking and perhaps the most revealing feature of subjoining is the 
possibiliy of mapping irreducible representations of a simple Lie algebra which admit 
a weight decomposition, in particular all the highest weight representations, to linear 
combinations of irreducible representations of another Lie algebra. The coefficients 
of such linear combinations (called ‘multiplicities’) are integers, not necessarily positive 
ones. The mapping is called a branching rule. Let A, B, C, 0,. . . denote semisimple 
Lie algebras or affine Kac-Moody algebras. Two subjoinings of B to A are (linearly) 
equivalent if their branching rules coincide at least for one faithful representation of 
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A because then they necessarily coincide for all of them. A subjoining which is not 
an embedding is called a proper subjoining. An embedding of the algebra B in A is 
denoted a usual by A 3 B while a proper subjoining of B to A is written A > B. In 
the former case B is a subalgebra of A, in the latter one we say that B is properly 
subjoined to A, or B is a hypoalgebra of A ;  both cases exemplify a subjoining of B 
to A. 

Embeddings and proper subjoinings can be decomposed into chains, 

A > B 2 C >  . . .  2 D  

where the outcome of several successive embeddings and proper subjoinings is either 
an embedding, A 2 0, or a proper subjoining, A > D. A proper subjoining A > C is 
not maximal if it can be decomposed into one of the chains 

A > B > C  A > B x C  A = , B > C .  

Another curious feature of subjoining is the existence of infinitely many non- 
equivalent subjoinings among isomorphic Lie algebras. In particular, there exist chains 
of subjoinings 

A > A > A >  . . .  > A  

of arbitrary length with all links nontrivial. 
In general a maximal reductive subalgebra of a given simple Lie algebra may not 

be maximal among subjoinings. That observation was the motivation for the invention 
of the subjoining [l]. Originally, the subjoining was used as a device in computing 
certain generating functions in representation theory for A = C in terms of generating 
functions for A > B and B > C. 

The maximal embeddings among semisimple Lie algebras of equal rank were 
classified by Bore1 and de Siebenthal [7], maximal embeddings among all semisimple 
Lie algebras were determined by Dynkin [8] and maximal subjoinings of equal rank 
reductive subalgebras in simple Lie algebras were classified by Moody and Pianzola 
[ 5 ] .  There are no examples known of maximal proper subjoinings which are not of 
the equal rank type. 

We use the names of affine Kac-Moody algebras identified, for example, in table 
Affl and Aff2 of [9] or tables 1 and 2 of [lo]. For the properties of semisimple Lie 
algebras, see [ 111.  

A round bracket denotes an irreducible representation, specified by its highest 
weight; a square bracket is any weight of a representation; a curly bracket contains a 
dominant weight and denotes the corresponding Weyl orbit. The relative position of 
a weight in an irreducible weight system is given by its depth, which is shown as 
a subscript whenever needed (see the definition following (2.2)). 

2. Proper maximal subjoinings of affine Kac-Moody algebras 

In [2] a semisimple algebra H or rank lH is said to be subjoined to a semisimple 
algebra G of rank IC a IH (the relationship is denoted G >  H) if there exists an IC x lH 
projection matrix P of rank IH such that there is a branching rule for G >  H 

P @ (  G )  = W ( H )  -R(H) (2.1) 

Here @(G) is the weight system of a representation of G, and Y ( H )  and R(H)  are 
weight systems of representations of H. The multiplicity, always a non-negative integer, 
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of a weight in 9 ( H ) - n ( H )  is its multiplicity in 9 ( H )  less its multiplicity in R(H) .  
In the special case that n( H) is the empty set for every a( G),  H is a subalgebra of G. 

A projection matrix P acts on individual weights of the system a( G), transforming 
them into weights of the difference 9 ( H ) - a ( H ) .  For many cases of interest the 
projection matrices can be found in [lo] and [12]. Here we adopt an equivalent 
definition (and easier to visualise and work with, especially when G is an affine 
Kac-Moody algebra) that H is subjoined to G if the matrix P above preserves Weyl 
group symmetry of the weight system, i.e., if P operating on a set of weights invariant 
under the Weyl group of G yields a set invariant under the Weyl group of H. It can 
be shown that this is equivalent to the requirement that the Weyl group W(H)  is a 
subgroup of the Weyl group W(G) of G. The existence of a branching rule (2.1) then 
follows. 

To begin, we now restrict our attention to subjoinings of the type G >  G between 
two isomorphic algebras. 

First we dispose of some trivial examples of subjoinings (actually embeddings) for 
which the projection matrix P is an lG x lG permutation matrix. Since we write weight 
components in a fundamental weights basis, it is convenient to think of the action of 
P on the nodes of the Dynkin diagram of G. Examples of trivial embeddings, as 
defined above, include, for the Kac-Moody algebras A;’), cyclical renumbering of the 
nodes, or reversal of the direction of numbering; for C!” and I2 2, and E$’) ,  
there is reflection of the Dynkin diagram in its centre; for D;’), 1 L 4, there is reflection 
in the centre and also exchange of the two nodes at one end; for Ek” there are 
permutations of the three ‘tails’ emanating from the centre node; finally, for Bj’’ and 
A$;!l, ZS3,  there is an interchange of the two nodes at the left end. Without the 
exclusion of these trivial cases, no subjoining or embedding would be maximal. 

Our first example of a non-trivial subjoining G >  G is a change of scale; but for 
Kac-Moody algebras, since there are no Weyl reflections along the imaginary root 6, 
we are permitted to change the scale independently in the real and imaginary directions. 
Since the projection matrix P is diagonal we write its elements in a row with no 
ambiguity. For a change of scale in real directions the projection matrix is 

P = diag ( k, k, . . . , k I 1 ) k > l  (2.2) 
where k is a integer. We have added an lth component to P (the others are numbered 
0, 1, . . . , I- 1) which acts on the depth of a weight (the negative of its imaginary 
component). That the subjoining (2.2) is maximal is equivalent to the requirement 
that k is prime, except when 

k = 2  and G is Fkl), C(1) 0 ‘ 2 )  A(2) B(1) A(2) 
6 5 1 1 + 1 ,  21 9 1 I 2 1 - 1 9  

or 
k = 3  and G is G$‘) or of’. 

In these cases, the subjoinings are non-maximal because they are products of subjoin- 
ings of the types to be described in the following five paragraphs. For the purpose of 
effecting Weyl reflections after the subjoining (2.2), the Cartan matrix should be 
modified from 
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The elements of the last column, which we have added to C, represent the negatives 
of the coefficients of S in the simple roots cq,, al,. . . , For a change of scale in 
the imaginary direction, the projection matrix is 

P = diag( 1, 1, . . . , 1 1 k) (2.3) 

and the Cartan matrix, for effecting Weyl reflections after the subjoining, is 

As in the finite-algebra case we can define a subjoining in both directions between 
a pair of dual algebras (two algebras are said to be dual if their Dynkin diagrams are 
interchanged by interchanging long and short roots in a connected Dynkin diagram); 
the subjoining involves an increase of the labels corresponding to the longer roots by 
a factor equal to the square of the ratio of the lengths of the roots. A similar subjoining 
is possible between any algebras whose Dynkin diagrams have the same shape (number 
of nodes the same and angles between pairs of corresponding simple roots the same). 
Thus for Bj”> A$L1(l2 3) we have 

P = diag(2,2,. . . ,2,111) 

and for Ai?:, > 

P=diag ( l ,  1 , .  . ., 1,211). (2.5) 
For FY’ > EL’) the projection matrix is 

P = diag(2,2,2,1,111) 

and for E?’> Fy’  

P = diag( 1, 1 , 1,2,2 I 1). (2.7) 

P = diag(3,3,1\ 1) (2.8) 

P = diag( 1,1,3 1 1). (2.9) 

For GY) > 0:” we have 

and for Di3) > GY) 

The three algebras Cj”, A$?) and D f l ,  1 2 2 ,  are related cyclically by maximal 

For Cj”> A\;) we have 
subjoinings. 

P = diag(2,1,. . . , 11 1) (2.10) 

P=d iag ( l ,  1 , .  . . , 1,211) (2.11) 

P=d iag ( l , 2 , .  . . , 2 , l \ l ) .  (2.12) 

for A$:’> D::Il we have 

and for D‘jY1 > C‘j” 

For A \ ” >  Ai2’ we have 

P = diag(2 , l l l )  (2.13) 
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and for Ai2’ > A\’) 

P = diag(l,211). (2.14) 

For the subjoinings (2.4)-(2.14) the Cartan matrix for effecting Weyl reflections 
after the subjoining i s  

where C ’  is the usual Cartan matrix for the subjoined algebra and k is the zeroth 
element of the projection matrix P. 

Before concluding this section we show, as an example, that the projection matrix 
P = diag(3,3,1 I 1) for the subjoining Gy’ > Dp’ does actually preserve Weyl symmetry. 
The Cartan matrices (negative sign is written as an overbar on a number), 

2 i o i  
(i 2 5 0) 

o i 2 0  
for Gy) 

and 
- 

2 i o 3-’ 

(i 2 i ; 1 0 3 2  
for Di3) 

can be used to effect Weyl reflections in the two weight systems: to reflect along the 
direction of the simple root ai a weight whose ith component is hi ,  subtract hi times 
the ith row of the Cartan matrix. In table 1 we reverse separately each component of 
the G;’) weight [ h o , A 1 , h 2 ] d ,  and in parallel each component of the Di3) weight 
[3Ao, 3 h l ,  h 2 ] d  obtained from it by the projection matrix P. For a general proof (G is 
the algebra and H the subjoined algebra) we need to consider only one pair of weight 
components, say [. . . , A i , .  . . , 5, .  . . Id  of G which for simplicity we write as [h i ,  A j l d .  
The G Cartan submatrix corresponding to the subdiagram with n lines joining the 
longer root ai to the shorter root aj is 

2 A -a io c,=(- 1 2 - a j o  ) 
while that to be used for H after the projection is 

The projection submatrix is diag( n, 1 11). Table 2 shows the result of reversing each 
component, and, in parallel, each component of the projected weight of the subjoined 
algebra. 

We conjecture without proof that we have given a complete list of maximal equal 
rank subjoinings of affine Kac-Moody algebras. 
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Table 1. Elementary Weyl reflections of an arbitrary G$" weight A and of the corresponding 
D f '  weight. 

GI" weights Di3) weights 

Table 2. Elementary Weyl reflections of the ith and j th  components of an arbitrary G 
weight A and of the corresponding weight of the algebra H subjoined to G; n lines join 
the nodes in the Dynkin diagram of G corresponding to a longer root ai and a shorter 
root a;. 

G H 

3. Orbit-orbit branching rules 

Branching rules for representations of an algebra G to subalgebra, or to subjoined 
algebra H, can be found by a three-step process. The steps are decomposition of 

(i) a weight system of an irreducible representation @( G )  to Weyl orbits (G-orbits) 
of G 

(ii) G-orbits to H-orbits, and 
(iii) H-orbits to an integer linear combination of weight systems of irreducible 

representations of H. 
Step (i)  amounts to determining the orbit multiplicities in an irreducible representa- 

tion of G;  efficient methods for implementing it are found in [lo] and [14]. 
Here we solve the problem of step (ii). For the subjoinings described in section 2 

they are all so simple as to be trivial. Our projection matrices have only non-negative 
elements, so they carry a dominant (non-dominant) weight of the algebra into a 
dominant (non-dominant) weight of the subjoined algebra. Thus each algebra orbit 
branches to a single subjoined algebra orbit, with orbit labels related by the projection 
matrix. 

Orbit multiplicities of suitably ordered representations form a triangular matrix 
[lo]; step (iii) can be achieved by inverting this matrix, or directly, as in [14]. 

4. Examples 

We consider four examples of branching rules, making use of the orbit multiplicities 
from tables of [lo] or [14]. 
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Example 1. A\”> A!’), P = diag(2,2 I 1)  
Let us take the irreducible representation of A\’) with the highest weight (1 0) and 
draw the first few of its weights as they appear by successive subtractions of the simple 
roots of the Lie algebra: 

A subscript at a weight-box indicates the depth; the multiplicity of a weight is shown 
in front of the box whenever it is > I .  The significant information here is only the 
multiplicities of the repeated dominant weight (1 0} and its depths. ’Thus it suffices to 
draw only 

M O  

E l l  

211012 
(4.2) 

from the weight system. Applied to a weight [ A o  A l l d  the projection matrix P gives 

P[AO A l l d  = [2AO2Alld. (4.3) 
Hence (4.2) projects as 

In order to decompose the result into contributions of irreducible representations, 
we write 

1201, 
1201, 
212012 

12010 
1021 

2 1 0 2 1 2  
31201, 

1 - /021, 
- 1 2 0 1 1  

- 1021, 
-2120), 

+ 
t 

+ 
1 2 0 1 1  

1021, 
12012 

-21021, 
- 2 m 2  

(4.5) 

+2 
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where on the right-hand side we have vertically aligned dominant weigh from the 
same irreducible representation. We then write the branching rule (4.5) in concise 
form using only highest weights: 

where the subscripts indicate the relative vertical displacement in (4.5). 

Example 2. Ai1’> A\’), P = diag( 1,  11 2). 
Again we consider the irreducible representation (1 O j  and write 

1101, E l 0  

m2 
21101, 21101, 

m, ---t 

Following the format of (4.5) we have 

(101, m. - m. 11010 

‘1 -1 11(11, 2m*-pJ2 

2(101, 

= 3)11)), -21101, - 1101, + 
5[101,  -31101, - Ilol, + a, 

(4.7) 

or, more concisely in terms of the highest weights, as the branching rule 

Example 3 .  EL”> E;’, P = diag(2, . . . , 2  I 1 )  
We consider the irreducible representation 

Application of P leads to a weight of level 2 and congruence class 0. There are only 
three dominant weights of this level and class: 

2 0 0 
(4.10) 

Proceeding with the counting of the multiplicities as before (using the tables of [lo]), 
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one gets the branching rule 

2 0 

+6(o 0 : 0 J1+C 0 : 0 J2 -( ; );i2?/ 0 2 1 +.. . .  

0 0 0 0 0  0 0 0 0 0 2  
(4.11) 

Example 4. Ilk3’> GY) 
The last example of subjoining branching rules refers to non-isomorphic algebras 
Di3’> Gi’), We consider the representation (1 0 0) of Dk3) algebra. The multiplicities 
of the dominant weights on the highest 14 levels of the weight system are 

U 

... 
(4.12) 

The projection matrix (2.9), being diagonal and having non-negative matrix ele- 
ments, transforms dominant weights into dominant weights and non-dominant ones 
into non-dominant ones. Hence the projected system coincides with (4.12) except that 
now it refers to the subjoined algebra GY). Using the known orbit multiplicities of 
Gill representations, the Gil) orbits can be transformed to Gi’) representations. The 
resulting branching rule from Di3) to Gill is 

( i O o ) , > ( i  oo) , - (001) ,+(1  00) ,+2(1 00),-(001),+(100),-(001),, 

+2(1 00)12-(00  l )13+ .  . . . (4.13) 

5. Final comment 

Among the affine algebras there exist proper inclusions between isomorphic algebras. 
Those inclusions are closely related to a class of subjoinings described above in that 
they are the ‘inverses’ of these subjoinings. Moreover, maximality of one implies 
maximality of the other. The phenomenon occurs for untwisted and twisted Kac- 
Moody algebras. 

We discussed subjoinings G > G obtained by multiplying the depth of each weight 
by a positive integer k. This corresponds to replacing the imaginary root S by Sk-I. 
The opposite operation (replacing 6 by Sk, or multiplying depths of weights by k-’ 
where k is a positive integer) defines an embedding G G. This means retaining only 
those generators whose depths are multiples of k ;  they obviously close under commuta- 
tion. As an example we consider the proper subalgebra A\” in an isomorphic algebra 
denoted by the same symbol, i.e. the embedding Ail’ 3 A:’) ,  with projection matrix 
P = diag( 1, 1 14) for the irreducible representation (1 0), . 
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Following the now familiar prodecure used in section 4 we find 

\: 

* . .  :I ... 

defined in (5.1) by 

(1  O ) n Z @  (1  O ) f l , A n , , n  
n '  

(of course the matrix has the property Anj+a,n+n = An,,n) yields the inverse branching rule 

(10 )0~(10)0 - (10 ) , - (10 )3+(10)4 - (10 )  5 . . .  

in agreement with (4.9). 
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